Metaprogramming
and Application Generator
Approaches to Software Reuse

Grady H. Campbell, Jr.
Software Architecture & Engineering
November 8, 1988

SOFTWARE AE

Goals of Software Reuse
productivity
reliability

SOFTWARE AE

Obstacles To Software
Reuse

Locating suitable components

Understanding the operation of selected
components

Reliably modifying a component for
current needs

SOFTWARE AE

Why Straightforward
Attempts At Reuse Fail

1) locating, selecting, and understanding
existing code is time-consuming and
modifying it is error prone.

2) assumptions

design decisions

dependencies
are

implicit

or not distinguished from functional
requirements

SOFTWARE AE

Making Reuse Possible

"design for reuse": generalizes "design for
change" to a family of
programs

"separation of concerns': domain

knowledge vs software
engineering knowledge

SOFTWARE AE

Methods of Reuse

Explicit
Repository
Taxonomy/Schema-based (tailoring is
automated)

Implicit
Model-based Application Generator

(selection, tailoring, and integration are
automated)

SOFTWARE AE

Keys To Effective,
Explicit Reuse of
Software

a taxonomy of abstract1ons (program
family schemas)

differentiation criteria for the instances of
each abstraction (parameters)

automatic code delivery from abstraction
selection and instantiation (parameter
completion)

SOFTWARE AE

Abstraction

key to effective reuse: identification of
"proper abstractions

"proper" abstraction: the "right" set of
concrete instances are included

too narrow = inflexible implementation
and too little reuse

too broad = implementation too
mefficient for practical use
or parameterization too
complex

SOFTWARE AE

A Partial Abstraction
Taxonomy

Application (Domain) Software

Hardware Hiding
Virtual Computer
Virtual Device

Virtual Display
Virtual Data Storage
Virtual Network

System Software
User Interface
Data Abstraction
Abstract Data Type
Abstract Object
Logic Abstraction
System Generation

SOFTWARE AE

"General-Purpose' vs.
"Generic" Software

both enable reuse to satisfy specific needs

only generic software can be
customized/optimized to those needs

SOFTWARE AE

How Variation In
Software Is
Accommodated

alternate implementations

conditional code
parameterization
metaprograms (parameterized schemas)

SOFTWARE AE

AN EXAMPLE

TYPE CLASSID IS NAME;

TYPE ATTRIBUTE IS

RECORD
ID:NAME;
FORM:
UNION
VALUE:TYPE;
RELATION:CLASSID;
END UNION;
END RECORD;

PROGRAM ATTRIBUTE (CLASS:CLASSID, DESCR: ATTRIBUTE) IS
IF CURR_SLOT (DESCR.FORM) = VALUE THEN

function g_DESCR.ID (PL : CLASS) return DESCR.FORM.VALUE;
ELSEIF CURR_SLOT (DESCR.FORM) = RELATION THEN
function g_DESCR.ID (pl : CLASS) return DESCR.FORM.RELATION_list;

ENDIF

END ATTRIBUTE;

PROGRAM CLASS (ID:NAME, PARENT: CLASSID, ATTRIBUTES:
LIST OF ATTRIBUTE) IS

type ID is obj.object;
TABLE (ID_list, ID);

function select () return ID_list;
FORALL ATTR IN ATTRIBUTES
ATTRIBUTE (ID, ATTR)

END FORALL;
END CLASS;

SOFTWARE AE s

Elements of Implicit
Reuse

A conceptual model of the problem domain

Abstractions corresponding to each domain
concept

Parameterization of each abstraction

determining possible instances of the
concept

SOFTWARE AE

The Application
Generator Application
Development Process

Specify

Validate

Generate

Execute

(incremental and iterative with
inferred defaults)

-(for consistency and

completeness)

(completely automated from
specifications)

(to evaluate correctness of
specifications)

SOFTWARE AE

SPECTRUM

A Domain-Independent

Application Generation

—nvironment

SOFTWARE AE

SPECTRUM

An environment for automatic software
application generation from high level
specifications.

Implicit reuse of software
Model-based specification
Domain independent

Supports iterative development;
integrated prototyping.

Oriented to complex applications

- Applications built around semantic
data model.
- Combines symbolic techniques
with traditional procedural approaches.
- Allows integration of external software.

SOFTWARE AE

Software Engineering
nvironment Levels

Dbmain-specific specifications
transformation

Generic specifications

e 3 A o 2
eric modules

LSRR

xpansion

Native codel

SOFTWARE AE

- SPECTRUM CHANGES THE
SOFTWARE
LIEE LY OLE MODEL

Requirements
Analysis

e
' Specification

N\

SPECTRUM Eliminates
High le\:/el design

Detail design

\
Code

R
Unit Test

X

Integration

\

System
Test &
Evaluation

SOFTWARE AE

MULTI-LEVEL DEVELOPMENT ENVIRONMENT

/ REQUIREMENTS \

APPLICATION
GENERATORS
(KES, SFEC THUM, =
GDSE) e -
GENERIC
COMPONENTS
(Appl. Arch.,
Meta Programming)
E—-________ v
= SEE
~(Incr. dev.,
inf. hiding
KES/DE)
\ 4
C SOURCE CODE

. l‘ Domain of the _,.|q __ Domain of the __>l
Appl. Specialist Software engineer

SOFTWARE AE

Application Model

—External Interface —

Model

e

knowledge source

strategy control

Semantic
Data Model

output control output control output control

output generation | H output generation | = | output generation

logical device | logical device logical device

input

Software AE et

WORLD MODEL CONCEPTUAL

STRUCTURE
WORLD MODEL
|_IM-N]
I T 1
CLASS PACKAGE (AUTONOMOUS
STRATEGY)
' [1-N] '
| 1 | |
STRATEGY ATTRIBUTE TYPE PROGRAM
[[1-1] ‘
1
STRATEGY (RESOLUTION)
| l 1
PRECOND (POSTEVAL)
[1-N]
VALUE/RELATE
PLAN
CLASS STRATEGY ATTRIBUTE STRATEGY
- INSTANTIATE/GENERATE - VALUE/RELATE - DEMAND
- INITIALIZE - INHERITED - EVENT
- REFINE/FORGET
VALUE PLAN RELATE PLAN
- USER INPUT - USER SELECTION
- RULE KS - PREDICATE SELECTION
- PROCEDURAL KS - GENERATE
- DEVICE INPUT - DEVICE INPUT
- INHERITANCE - INHERITANCE
- SUBSTRATEGY - SUBSTRATEGY

SOFTWARE AE

° EXTERNAL INTERFACE
CONCEPTUAL STRUCTURE

EXTERNAL“NTERFACE
I

DEVICE OUTPUT CONTROL

T
SCHEMA

- INPUI OUTPUT

!

OUTPUT
GENE?ATION

OUlI'PUT
MANAGEMENT

DEVICE INPUT
- STANDARD HARDWARE - OUTPUT SYNCHRONOUS
- EXTERNAL SOFTWARE - PROMPTED SYNCHRONOUS
- RELATIONAL DATABASE - (ASYNCHRONOUS)

OUTPUT CONTROL OUTPUT GENERATION OUTPUT MANAGEMENT
- SEQUENTIAL -OBJECT-ORIENTED - ACTIVATION
- SELECTION - RELATION-ORIENTED - OBJECT SELECTION
- CONCURRENT - TEXT/DOCUMENT - ENABLED INPUTS
- SUBORDINATE - HYBRID/NESTED

SOFTWARE AE

APPLICATION SPECIFIC
ENVIRONMENTS

An Application Specific Environment
(ASE) is a software development and
life cycle support tool specialized
to a single application class.

- Generation from high level
specifications '

- Interface reflects semantics of
application domain

- Rapid prototyping is an integral
concept -

- Programming not involved

Software A&E

What Can Be Done Now

4GL application generators

Object-oriented languages

Manual schema-based metaprogramming

SOFTWARE AE

Summary

Reusable Components must be designed for
reuse

Proper abstraction is essential to effective
reuse

Metaprogramming provides a practical
representation of abstraction supporting
explicit reuse of derivable variations

Mechanisms for explicit reuse are a basis

for implicit reuse in the form of application
generators

SOFTWARE AE

